If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+17x+35=0
a = 1; b = 17; c = +35;
Δ = b2-4ac
Δ = 172-4·1·35
Δ = 149
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{149}}{2*1}=\frac{-17-\sqrt{149}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{149}}{2*1}=\frac{-17+\sqrt{149}}{2} $
| -9.3x+8.2=54.7 | | 8/5+3/5x=43/15 | | 6(v+6)-5=1+9v | | 8/5+3/5x=43/15+5/3x+2/3 | | 5+y|20=-60 | | 6(x-4)=24x | | 3/5+5y=6y-2/5 | | -5+8=m-6 | | 7-4.9t=15+7. | | -3x=10=5x-8 | | +8p=7p+5 | | b/6-5=7 | | |5v+5|-41=-6 | | 4.48=((2x)(x))/(0.80-2x) | | -5n-9=4n | | 6-13x=5x-10x+4 | | {2}{3}x=18 | | 5+y/20=-60 | | 2-3y=12-y | | 10^(0.25^x)=x+11 | | 7y+6=5y+-2 | | 8-x/5+4/5=-1 | | 7g+12=21+g,g= | | –4h+8=–3h | | 2x^2-50x=83 | | u+1.67/2=2.18 | | -8x+-12=-40-x | | 2x-7/5+8=9 | | 18x+7-14x+(-6)-10=-13 | | -r+7=2 | | 4+8-3x=92 | | 6t+8t=20+8-14 |